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Enantioresolution of racemic 2,2-dimethyl-3-hexanol in sol-
id state was achieved with four kinds of crystalline matrices of
cholamide, yielding its S enantiomer in high purity and yields.
This intercalation method accompanied bilayer inversion on
their lipophilic sides.

Solid-state dynamic behavior has lately received much at-
tention in the field of material science.1–6 For example, coordina-
tion polymers with nanopores have been applied to gas sorption
and storage materials.7–9 Organic inclusion crystals are also at-
tractive owing to their guest-responsive flexibility and diversity
for the purpose of separation and recognition.10

We studied intercalation phenomena by using cholic acid,
which is a classical host compound.11 In addition, we have
reported that cholamide (3�,7�,12�-trihydroxy-5�-cholamide,
CAM, Scheme 1) functions as an excellent host for enantioreso-
lution of 2,2-dimethyl-3-hexanol (1) among secondary aliphatic
alcohols, and that such chirality recognition comes from a
reversed bilayer on lipophilic sides.12 This successful result
prompted us to attempt an intercalation method rather than a re-
crystallization method, leading us to green chemistry.13 Here we
report highly efficient enantioresolution of 1 by the intercalation
method by using different matrices which consist of CAM crys-
tals with four types of host frameworks.

CAM was prepared via a conventional condensation reac-
tion from commercially available cholic acid and ammonia by
a mixed anhydride method at 243K.14 The inclusion compounds
of CAM�1–4 were obtained by recrystallization by previously
reported methods.12,15 Guest-free (GF) crystals were prepared
by desorption of CAM�2 inclusion crystals. The guest compo-
nent was completely removed from the crystals upon heating
at 150 �C under reduced pressure for 1 h, which was confirmed
by thermal gravimetric analysis (TG). The entire inclusion ratios
of the intercalated crystals were determined by TG (Figure S1)
and gas chromatographic (GC) analyses.16 Enantiopurity of 1

was established by chiral GC analyses (CP Chirasil DEX CB)
(Figures S2–S6). The crystals before and after the intercalation
were characterized by means of powder X-ray diffraction
(PXRD) with a Rigaku RINT-2100 at room temperature
(Figures S7 and S8).

The intercalation of 1 was performed by using four kinds of
crystalline matrices of CAM, as summarized in Table 1. First,
we examined the intercalation with GF crystals. The crystals
were suspended in a hexane solution containing four equivalent
amounts of racemic 1 for 24 h.17 The filtered crystals accommo-
dated 1 in an inclusion ratio of 96% and in 96% enantiomeric ex-
cess (ee) with S absolute configuration. This ee value was close
to the value (98% ee) by the recrystallization.12 Next, we exam-
ined the intercalation by using three other inclusion crystals,
CAM�2, CAM�3, and CAM�4 with different host frameworks,
�-trans, DCA, and triangular,15b respectively. Although the ee
values were similar to each other, the inclusion ratios were dif-
ferent. The guest exchange moderately took place in the �-trans-
and DCA-crystals, but slightly in the triangular-crystals. These
results are considered to reflect a notable effect of the initial ma-
trices in the guest exchange events.

We employed PXRD analyses to reveal changes of the
crystal structures before and after the intercalation (Figures 1
and S7). Figure 1a shows the PXRD pattern of initial crystals
of CAM�2 before the guest exchange, while Figure 1b shows that
of the intercalated crystals after the guest exchange. The latter
pattern is very similar to that obtained by simulation from
the X-ray crystal structure of a single crystal of CAM�1
(Figure S8). The intercalated crystals of GF CAM and CAM�3
have PXRD patterns which are similar to that of the intercalated
CAM�1 from the CAM�2 (Figures S7a–S7d). In contrast, CAM�4
exhibits a small change of the patterns (Figures S7e and S7f).

Figure 2 displays bilayer structures of CAM�1 and CAM�2.
It can be seen that bilayers of CAM�1 are parallel arrangements
while those of CAM�2 are antiparallel ones, as shown by arrows.
This result indicates that the guest exchange event accompaniesScheme 1.

Table 1. The intercalation of 1 into four types of crystalline ma-
trices of CAM, which was evaluated by enantiomeric excess,
absolute configuration, and inclusion ratioa

Compound Framework ee/%
Absolute

configuration
Inclusion
ratio/%c

CAM GF 96 S 96
CAM�2 �-trans 95 S 86
CAM�3 DCA 97 S 77
CAM�4 Triangularb 96 S <10

aFour equivalent amounts of racemic 1 to CAM crystals were
used. bThis crystalline matrix included water. cA 1:1 molar
ratio of guest-to-host corresponds to a 100% inclusion ratio.
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a directional reversion of the bilayers on the lipophilic sides.
Such a drastic structural change is very rare in solid states. Fur-
thermore, the guest exchange event proceeded with slight dete-
rioration of the crystals for eight days (Figure 3), suggesting that
insertion of 1 may induce the bilayer inversion with efficient
molecular movement. At this moment, inversion mechanism re-
mains unrevealed. However, we assume that the inversion takes
place via molecular rotation and slide at a microscopic part in the
crystal followed by subsequent domino transformation.

In summary, we have demonstrated that the successful enan-
tioresolution of racemic 2,2-dimethyl-3-hexanol was accom-

plished by intercalation. It is noteworthy that the guest exchange
depended on the initial host matrices. We now extensively inves-
tigate dynamic chiral recognition of other steroidal inclusion
compounds by the intercalation.
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Figure 1. PXRD patterns of (a) initial CAM�2 crystals obtained
by recrystallization and (b) intercalated CAM�1 crystals ob-
tained by the guest exchange from the CAM�2.

Figure 2. Schematic representation of crystal structures of
CAM�2 before guest exchange (upper) and CAM�1 after the
guest exchange (lower). The guest exchange accompanies bilay-
er inversion on their lipophilic sides.

(a) (b)

Figure 3. Optical micrographs of CAM crystals; (a) CAM�2
crystals obtained by recrystallization of CAM from 2, (b)
CAM�1 crystals after soaking the CAM�2 crystals into a solution
of 1 for 8 days.
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